提及解一元三次方程的基本方法?(一元三次方程怎么找?)的相关内容,许多人不太了解,来看看小娉的介绍吧!
解一元三次方程的基本方法?
一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观,效率更高。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。
一元三次方程怎么找?
初高中如果真的碰到一元三次方程,一定可以用试根法做出答案。试根法就是用三次项系数的约数与常数项系数约数相除(带正负号),逐个试出一根,再用大除法做。
如何用因式分解法一元三次方程怎么解?
第一步先细算打散,然后再整理,然后在过程中,但大多在简化的结果中再分解.
12ax^3-12ax-16=(4x-4)(3ax^2+3ax-1)
12ax^3-12ax-16=(12ax^3+12ax^2-4x)-(12ax^2+12ax-4)
12ax^3-12ax-16=12ax^3+12ax^2-4x-12ax^2-12ax+4
-16=-4x+4
4x=20
x=5
这种题是人家设计好的,其值必定可求,也就是说不会真让你求3次方程,在细化过程中必然会消掉大量内容,其结果往往是简单整数.比如说这个题中左边有复杂的3次方代数式,还有很多a.要想求出结果,最终得到的方程必定是没有a的,所以凡有a的一定会消失,大胆的计算,如果你算来算去a还存在,你就需要检查是否算错了.
这是比较笨的方法,计算中如果不够细心,很容易算错,还有一种方法就是得看巧合情况,需要敏感的观察和反应力,得有点点悟性.
一元一三次方程怎么解?
标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0),其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。
两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
一元三次方程的求解方法?
盛金定理:当b=0,c=0时,盛金公式1无意义;当A=0时,盛金公式3无意义;当A≤0时,盛金公式4无意义;当T<-1或T>1时,盛金公式4无意义。
当b=0,c=0时,盛金公式1是否成立?盛金公式3与盛金公式4是否存在A≤0的值?盛金公式4是否存在T<-1或T>1的值?盛金定理给出如下回答:
盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式1仍成立)。
盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式1解题)。
盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式1解题)。
盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式2解题)。
盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式2解题)。
盛金定理6:当Δ=0时,若A=0,则必定有B=0(此时,适用盛金公式1解题)。
盛金定理7:当Δ=0时,若B≠0,盛金公式3一定不存在A≤0的值(此时,适用盛金公式3解题)。
盛金定理8:当Δ<0时,盛金公式4一定不存在A≤0的值。(此时,适用盛金公式4解题)。
盛金定理9:当Δ<0时,盛金公式4一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
显然,当A≤0时,都有相应的盛金公式解题。
注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
当Δ=0时,盛金公式3不存在开方;当Δ=0(d≠0)时,卡尔丹公式仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式2中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。
以上盛金公式解法的结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。